Chaos Engineering

Niclas Gothberg

* Distributed systems are fragile and have become much more
complex

 Disturbances have become harder to predict

* We all depend on uptime of systems to a greater extent
 Financial impact of system downtown

* Failures are given

Availability (SLA) Downtime per year
18 days 6 hours

3 days 15 hours

8 hours 45 minutes

.-'.\

E

= p : \ ! - ; i P
& 1|h|l|\:l|lh| | 1

* “The ability of a workload to handle and recover WSl il | I ‘ 0«
from unexpected conditions. . .” P L B¢~ i
p o r/ il i

Resilience™ Is engineered

* Infrastructure

* Network

* Data

» Application

* People & Processes

“Chaos Engineering is the discipline of
on a system in order to
In the system’s capabillity to
iIn production.”

Principles of Chaos Engineering
http://principlesofchaos.org

REL 12. How do you test reliability? info

Ask an expert [2

After you have designed your workload to be resilient to the stresses of production, testing is the
only way to ensure that it will operate as designed, and deliver the resiliency you expect.

(D Question does not apply to this workload Info

Select from the following

(] Use playbooks to investigate failures Info

(] Perform post-incident analysis Info

(] Test functional requirements |nfo

(] Test scaling and performance requirements |nfo

(] Test resiliency using chaos engineering Info

(] Conduct game days regularly Info

And Others....

Phases of Chaos Engineering

Set of measurements thatindicates
“normal” behavior of a system from a

Steady
State

business perspective, and within a
given set of tolerances

Run

Verify and

Evaluate

Experiment

- Example

What if we had slow response times in our Analytics cluster

Hypothesis

Conditions

Result

No customerimpact expected

Duration: 10 min
Failure Injection: Latency 400-600ms
Targets: 70% of all request

10% increase in timeout errors
2s latencyincrease for user wait time
Alert threshold set to high

Benefits of

* Help reveal blind spots in your observability
* Promotes a “non-blaming” culture
* Inject failures to build immunity

 Unit, Integration, System testing usually don’t consider
operating conditions

When to run your experiments

i
-3
t—.g«-

e CI/CD pipeline
* Scheduled activity
* Gamedays

Challenges

* Teams might not have the full picture
* Cultural change / internal politics

* Technical debt

* Security

* Invested in a specific technical roadmap

Emergency
Stop

Blast Radius

Some Best Practices

 Test as close to Production as
possible
* Avoid assumptions when
defining operating conditions
« Systems can behave
differently depending on

environment and traffic
patterns

» Avoid experiments you know will
break

 Limit Blast Radius

« Always make sure you have an
emergency stop

